Convergence analysis of two finite element methods for the modified Maxwell’s Steklov eigenvalue problem
نویسندگان
چکیده
The modified Maxwell’s Steklov eigenvalue problem is a new arising from the study of inverse electromagnetic scattering problems. In this paper, we investigate two finite element methods for and perform convergence analysis. Moreover, monotonic discrete eigenvalues computed by one analyzed.
منابع مشابه
Nonconforming finite element approximations of the Steklov eigenvalue problem
Article history: Received 27 November 2008 Received in revised form 27 March 2009 Accepted 22 April 2009 Available online 3 May 2009 MSC: 65N25 65N30 65N15
متن کاملA Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods
In this paper, a multilevel correction scheme is proposed to solve the Steklov eigenvalue problem by nonconforming finite element methods. With this new scheme, the accuracy of eigenpair approximations can be improved after each correction step which only needs to solve a source problem on finer finite element space and an Steklov eigenvalue problem on the coarsest finite element space. This co...
متن کاملConvergence of adaptive finite element methods for eigenvalue problems
In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
متن کاملA two-grid discretization scheme for the Steklov eigenvalue problem
In the paper, a two-grid discretization scheme is discussed for the Steklov eigenvalue problem. With the scheme, the solution of the Steklov eigenvalue problem on a fine grid is reduced to the solution of the Steklov eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. Using spectral approximation theory, it is shown theoretically that the tw...
متن کاملConvergence Analysis for Eigenvalue Approximations on Triangular Finite Element Meshes
The paper is devoted to the eigenvalue problem for a second order strongly elliptic operator. The problem is considered on curved domains, which require interpolated boundary conditions in approximating finite element formulation. The necessary triangulations for solving the eigenvalue problem consists of isoparametric elements of degree n, where n is any integer greater than two. An approximat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM
سال: 2022
ISSN: ['1270-900X']
DOI: https://doi.org/10.1051/m2an/2022001